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Abstract. We consider probabilistically constrained linear programs with general distributions for the
uncertain parameters. These problems involve non-convex feasible sets. We develop a branch-and-bound
algorithm that searches for a global optimal solution to this problem by successively partitioning the non-
convex feasible region and by using bounds on the objective function to fathom inferior partition elements.
This basic algorithm is enhanced by domain reduction and cutting plane strategies to reduce the size of the
partition elements and hence tighten bounds. The proposed branch-reduce-cut algorithm exploits the monoto-
nicity properties inherent in the problem, and requires solving linear programming subproblems. We provide
convergence proofs for the algorithm. Some illustrative numerical results involving problems with discrete
distributions are presented.

Key words. Probabilistically Constrained Linear Programs – Chance Constrained Programs – Global Opti-
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1. Introduction

Various applications in reliability and risk management (cf.[17]) give rise to probabilis-
tically-constrained linear programs (PCLP) of the following form

min
x

cT x (1)

s.t. Ax = b (2)

P{T x ≥ ξ(ω)} ≥ α (3)

x ≥ 0. (4)

In the above model, x ∈ R
n is a vector of decision variables; the parameters c ∈ R

n,
A ∈ R

p×n, b ∈ R
p and T ∈ R

m×n represent deterministic problem data; ω is a random
vector from the probability space (�, �, P) and ξ : � �→ R

m represent stochastic
right-hand-side parameters; P{S} denotes the probability of the event S ∈ � under the
probability measure P; and α ∈ (0, 1) is a scalar. The probabilistic constraint (3) requires
that the inequalities T x ≥ ξ(ω), involving random data, hold with a probability of at
least α.
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Beginning with the seminal work of Charnes and Cooper [5], many different solu-
tion techniques have been proposed for different versions of PCLP. Most of the existing
approaches rely on specific assumptions on the distribution of the stochastic parameters
that render convex the feasible region defined by the probabilistic constraints (3). For
example, if the stochastic parameters have a continuous log-concave distribution, then
PCLP is guaranteed to have a convex feasible set [15], and hence may be solvable with
standard convex programming techniques (see [17] for a comprehensive review). For
general distributions, in particular for discrete distributions, the feasible region defined
by (3) is non-convex. This non-convexity is illustrated by the following simple example
from [20] (a similar example is presented in [22]).

Example 1. Consider the following PCLP:

min
x1,x2

c1x1 + c2x2

s.t. P

{
x1 + x2 ≥ ξ1

x1 + 3x2 ≥ ξ2

}
≥ 0.5

x1, x2 ≥ 0,

where ξ1 and ξ2 are random variables with the joint distribution P {ξ1 = 2, ξ2 = 4} = 0.5
and P {ξ1 = 3, ξ2 = 0} = 0.5. The feasible region is given by the union of the polyhedra

P1 = {
(x1, x2) ∈ R

2+ : x1 + x2 ≥ 2, x1 + 3x2 ≥ 4
}

and
P2 = {

(x1, x2) ∈ R
2+ : x1 + x2 ≥ 3, x1 + 3x2 ≥ 0

}
,

and is clearly non-convex.

For discrete distributions, a PCLP can be immediately reformulated as a mixed-
integer linear program (MILP) (see [17]). Ruszczyński [18] has developed specialized
cutting planes for this MILP reformulation, and embedded these within a branch-and-
cut algorithm. Unless the random variables are independent, the MILP reformulation
involves a huge number of binary variables – one for every possible joint realization of the
random parameters – and may be computationally impractical in general. An improved
MILP formulation for the PCLP can be constructed if the set of p-efficient points (PEPs)
can be identified. A point z ∈ R

m is said to be a PEP for the random variable ξ(ω) if
P{z ≥ ξ(ω)} ≥ α and there is no y such that y ≤ z, y �= z and P{y ≥ ξ(ω)} ≥ α[16]. For
discrete distributions with certain concavity properties, Dentcheva et al. [6, 7] have devel-
oped efficient convex programming relaxations for PEP-based MILP formulations for
PCLPs. Such relaxations have been used within exact branch-and-bound algorithms for
some classes of probabilistically constrained MILPs [2, 3]. Sen [21] has suggested con-
vex relaxations for PCLPs with general discrete distributions using disjunctive program-
ming techniques. Recently, numerical methods for various application-specific PCLPs,
such as those arising in medical logistics [1] and financial risk management [8], have
been proposed.

In this paper, we develop an algorithm for obtaining global optimal solutions to
PCLPs. Unlike prior work, we do not make any concavity or continuity assumptions
on the underlying distributions. The proposed algorithm is a branch-and-bound scheme
that searches for a global optimal solution by successively partitioning the non-convex
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feasible region and by using bounds on the objective function to fathom inferior par-
tition elements. The basic scheme is enhanced by domain reduction and cutting plane
strategies to reduce the size of the partition elements and hence tighten bounds. We
refer to this strategy as branch-reduce-cut. The proposed method exploits the mono-
tonicity properties inherent in the problem, and requires solving linear programming
subproblems. Convergence analysis of the algorithm in case of discrete and continuous
distributions is provided. We also present numerical results for PCLPs involving discrete
distributions and demonstrate that the proposed algorithm is significantly superior to a
straight-forward MILP approach.

The remainder of this paper is organized as follows. In Section 2, we reformulate
PCLP to reveal the inherent monotonicity in the problem. The proposed branch-reduce-
cut algorithm is developed in Section 3, and its convergence analysis is presented in
Section 4. Finally, in Section 5 we present some numerical results with the proposed
algorithm on randomly generated PCLP instances involving discrete distributions.

2. Problem reformulation and structural properties

Consider the following problem:

min
y

f (y) (5)

s.t. y ∈ G ∩ H, (6)

where y ∈ R
m is a vector of decision variables; f : R

m �→ R∪{−∞, +∞} is the linear
programming value function

f (y) = min
x

{
cT x : Ax = b, T x ≥ y, x ≥ 0

}
(7)

(we let f (y) = −∞ and f (y) = +∞ when the linear program (7) is unbounded and
infeasible, respectively); the set G is the set of y’s for which the linear program (7) is
feasible, i.e.,

G = {
y ∈ R

m : f (y) < +∞} ; (8)

and the set H is defined as

H = {
y ∈ R

m : F(y) ≥ α
}
, (9)

where F : R
m �→ [0, 1] is the cumulative density function of the random vector ξ(ω),

i.e., F(y) = P{y ≥ ξ(ω)}.
The following result establishes the equivalence between PCLP (1)-(4) and the prob-

lem (5)-(6). The proof is straight-forward and is omitted.

Proposition 1.

(i) If x∗ is an optimal solution of the PCLP (1)-(4), then y∗ = T x∗ is an optimal
solution of (5)-(6), and both problems have the same optimal objective function
value.
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(ii) If y∗ is an optimal solution of (5)-(6), then x∗ ∈ argmin
{
cT x : Ax = b, T x ≥ y∗,

x ≥ 0} is an optimal solution of the PCLP (1)-(4), and both problems have the same
optimal objective function value.

Using Proposition 1, we consider solving the reformulated PCLP (5)-(6) throughout
the remainder of this paper. Henceforth, the acronym PCLP will refer to the reformulation
(5)-(6). The following assumptions are required to ensure that PCLP is well-defined.

Assumption 1. The set of dual solutions to the linear program (7) is non-empty, i.e.,
{
(π, ρ) ∈ R

p+m : πA + ρT ≤ c, ρ ≥ 0
} �= ∅.

By weak duality, the above assumption guarantees that f (y) > −∞ for all y.

Assumption 2. The constraint (6) in PCLP can be replaced by

y ∈ G ∩ H ∩ [yL, yU ],

for some yL ≤ yU .

The above assumption is required to make the feasible region bounded.

Proposition 2 (see, e.g., [4]). Under Assumption 1,

(i) the set G is non-empty, closed and convex, and
(ii) the function f is continuous, piece-wise linear, convex, and non-decreasing over

G.

Proposition 3. Under Assumptions 1 and 2, if the feasible region of the PCLP (5)-(6)
is non-empty, then there exists an optimal solution.

Proof. The set H is closed due to the upper semi-continuity of the cumulative density
function F . Thus the feasible region of PCLP is compact, and the objective function is
continuous. The result then follows from the Weirstrass Theorem. �

Note that the set G satisfies the following property

x ≤ y and y ∈ G ⇒ x ∈ G.

Such a set is called a normal set [25]. Owing to the non-decreasing property of F , the
set H satisfies

x ≥ y and y ∈ H ⇒ x ∈ H.

Such a set is called a reverse normal set [25]. Thus the problem (5)-(6) involves mini-
mizing a non-decreasing function over the intersection of a normal and a reverse normal
set. Such problems belong to the class of non-convex monotonic optimization problems
recently studied by Tuy [25], Li et al. [12] and Toh [24]. Following are some important
properties adapted to our setting (the proofs follow immediately from the general results
in [25]).
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Proposition 4. Under Assumptions 1 and 2,

(i) if the problem is feasible then yL ∈ G and yU ∈ H ;
(ii) if yL ∈ H , then either yL is an optimal solution or the problem is infeasible;

(iii) if yL �∈ H and the problem is feasible, then there exists an optimal solution on the
relative boundary of H ;

(iv) if ŷ ∈ [yL, yU ] is on the relative boundary of H , then there cannot be a solu-
tion that is better (i.e., feasible with a smaller objective value) in the sets QA :={
y : yL ≤ y < ŷ

}
and QB := {

y : ŷ ≤ y ≤ yU
}
. Consequently, the sets QA and

QB can be removed from further consideration.

In the case of a (finite) discrete distribution of the random vector ξ(ω), PCLP has
some additional properties. Suppose ξ(ω) has K possible realizations

{
ξ1, . . . , ξK

}
with

probabilities
{
p1, . . . , pK

}
. Let

�j = ∪K
k=1

{
ξk
j

}
for j = 1, . . . , m and C =

m∏
j=1

�j . (10)

Note that the set C is finite.

Lemma 1. If ξ(ω) has a discrete distribution, then for any y ∈ R
m such that y ∈ H ,

there exists ŷ such that

ŷ ≤ y, ŷ ∈ C and ŷ ∈ H.

Proof. Let K(y) = {
k ∈ {1, . . . , K} : ξk ≤ y

}
, then y ∈ H ⇔ ∑

k∈K(y) pk ≥ α. Let

ŷj = maxk∈K(y)

{
ξk
j

}
for j = 1, . . . , m. Then ŷ ≤ y, ŷ ∈ C, and ŷ ≥ ξk for all

k ∈ K(y), thus ŷ ∈ H . �

Proposition 5. If ξ(ω) has a discrete distribution and PCLP has an optimal solution,
then there exists an optimal solution y∗ ∈ C.

Proof. Let y′ ∈ H ∩G be any optimal solution of PCLP, then by Lemma 1, there exists
y∗ ∈ C such that y∗ ≤ y′ and y∗ ∈ H . Since G is a normal set, we have y∗ ∈ G, thus
y∗ is feasible. By the monotonicity of the objective function, f (y∗) ≤ f

(
y′), thus y∗

is also an optimal solution. �

By virtue of Proposition 5, in case of discrete distributions, we can restrict our search of
the optimal solution to the finite set C intersected with G ∩ H .

In the following section, we develop a branch-and-bound algorithm for solving PCLP
by exploiting the properties outlined above. In addition to revealing the monotonicity
properties, the reformulation (5)-(6) has the added advantage (over the original formu-
lation (1)-(4)) that the problem dimension is m rather than n, and often m < n. We
conclude this section with an example to illustrate the properties of the reformulation.
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Example 2. Consider the following PCLP:

min
x1, x2

−x1 − 2x2

s.t. P

{−x1 − x2 ≥ ξ1

x1 + 1
2x2 ≥ ξ2

}
≥ 0.5

x1, x2 ≥ 0,

where ξ1 and ξ2 are random variables with a discrete distribution consisting of the 10
realizations given in Table 1.

It can be verified that the three p-efficient points of the distribution are (−5, 3),
(−3, 2) and (0, 1.5). The feasible region of PCLP is then given by the union of the
polyhedra

P1 =
{
(x1, x2) ∈ R

2
+ : −x1 − x2 ≥ −5, x1 + 1

2
x2 ≥ 3

}
,

P2 =
{
(x1, x2) ∈ R

2
+ : −x1 − x2 ≥ −3, x1 + 1

2
x2 ≥ 2

}
and

P3 =
{
(x1, x2) ∈ R

2
+ : −x1 − x2 ≥ 0, x1 + 1

2
x2 ≥ 1.5

}
,

and is illustrated in Figure 1 (a).
The reformulation of the problem is

min
y1,y2

f (y1, y2)

s.t. (y1, y2) ∈ G ∩ H ∩ [yL, yU ],

wheref (y1, y2) = minx1,x2

{−x1 − 2x2 : − x1 − x2 ≥ y1, x1 + 1
2x2 ≥ y2, x1 ≥ 0,

x2 ≥ 0}, G = {(y1, y2) : f (y1, y2) < +∞}, H = {(y1, y2) : F (y1, y2) ≥ α}, yL =
(−7, 1)T , yU = (1, 5.5)T . The feasible region in the reformulated problem is shown in
Figure 1 (b). The points of intersection of the dotted grid constitute the finite set C.

3. A branch-reduce-cut algorithm

Owing to the non-convexity of the set H (recall that the normal set G and the function
f are convex), PCLP is a non-convex optimization problem. Initially proposed to deal

Table 1. Distribution of
(
ξ1, ξ2

)

k 1 2 3 4 5 6 7 8 9 10

ξk
1 −7 −6 −6 −5.5 −5 −3 −3 −2 0 1

ξk
2 1.5 1 2 3 1 1 5.5 3 1 2

pk 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
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P3 = 0
P2

P1

x2

x1

y2

y1

H

G

(a)
(b)

Fig. 1. (a) The feasible region in the x-space, (b) The feasible region in the y-space.

with non-convexities arising from discreteness [11], the branch-and-bound scheme has
since evolved into a general purpose global optimization technique for a wide class
of non-convex problems [9, 10, 23]. The scheme proceeds by recursively partitioning
(branching) the feasible region in search of a global optimal solution. For a given partition
element, bounds on the optimal objective value, based on efficiently solvable relaxations
of the problem, are used to decide whether to examine the partition element further or to
fathom it, i.e., discard it from further consideration (bounding). For example, in the case
of MILPs, linear programming relaxation based bounding and integrality-based branch-
ing rules are used (cf. [14]). For general non-convex non-linear problems, developing
tight and tractable (convex) relaxations pose a crucial challenge [23]. Furthermore, since
the feasible region is typically (semi)continuous, special care has to be taken to decide
how a particular partition element is to be further refined in order to ensure convergence.

A variety of branch-and-bound schemes have been proposed for various classes of
non-convex optimization problems. These methods rely on exploiting the analytical
form of the objective and constraints of the problem in order to develop convex relax-
ations. Several sophisticated global optimization software that automatically construct
such relaxations and use these within enhanced branch-and-bound search are also avail-
able [13, 19]. Unfortunately, none of these existing global optimization methods can be
used for PCLP since neither the objective function f , nor the set G, and in some cases,
the set H defining the constraints is available in closed analytic form.

In this section, we exploit the monotonicity properties of PCLP outlined in the
previous section to develop a specialized branch-and-bound algorithm. The algorithm
recursively partitions the hyper-rectangle [yL, yU ], that contains the feasible region, into
smaller hyper-rectangles. The monotonicity of the objective function f guarantees that
for any hyper-rectangular partition element [l, u], f (l) is a valid lower bound and can be
used for fathoming. The monotonicity property of the set H is used for branching and
to find feasible solutions. This basic branch-and-bound scheme is enhanced by cutting
plane strategies to successively approximate the set G and the set of optimal solutions
contained in G. The cutting planes along with the monotonicity of the set H is used
within a domain reduction step to reduce the size of the current hyper-rectangle. We
refer to this algorithm as branch-reduce-cut and provide its detailed description next.
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In the following description, R denotes a hyper-rectangular partition element in R
m,

i.e. R = [l, u] with l, u ∈ R
m and l ≤ u; v(R) = ||u − l||∞ is a measure of the size

of R; LB(R) denotes the lower bound on the optimal value over R; UB denotes a
global upper bound on the optimal value; L is a list of un-fathomed hyper-rectangles; y∗
denotes the best candidate solution; G denotes a normal set approximation of the set of
optimal solutions contained in G (the algorithm will ensure that this approximation is a
normal set); and ε denotes a pre-specified tolerance. Recall that, given a vector y ∈ R

m,
the function f (y) is evaluated by solving the linear program (7), and if f (y) = +∞ then
y �∈ G. We assume that we have an oracle to check, given y ∈ R

m, whether y ∈ H , i.e.,
we can evaluate the cumulative density function F of the random vector ξ(ω) and check
if F(y) ≥ α. An algorithmic description of the proposed branch-cut-reduce scheme is
presented in Figure 2. The key steps are highlighted in italics, and are described below.

The algorithm starts by considering the initial partition element [yL, yU ] given by
the bounds on the variables and checks the necessary feasibility condition in Proposi-
tion 4(i) and the sufficient optimality condition in Proposition 4(ii). If neither of these
two conditions is satisfied, the algorithm starts its main loop.

3.1. Selection and branching

The first main step is to select a partition element from the list L of unfathomed partition
elements. This choice is based upon the least-lower bound rule (line 2 of the main loop
in Figure 2). This guarantees that the bounding process is bound improving [10].

After the selection step, the selected hyper-rectangle is partitioned into two hyper-
rectangles. In the case of a continuous distribution, the branching rule is to bisect the
longest edge. That is, given R = [l, u] of size v(R) > 0 with the longest edge index
̂ ∈ argmaxj=1,...,m{uj − lj }, R is partitioned into R1 = [l, u − ê v(R)/2] and R2 =
[l + ê v(R)/2, u], where ej ∈ R

m is the j -th unit vector. The longest-edge bisection
rule guarantees that the branching process is exhaustive [10].

Since, in the discrete case we can restrict our search to the set C (Proposition 5),
our branching rule is as follows. Given a hyper-rectangle R = [l, u] of size v(R) >

0 suppose the longest edge has an index ̂ ∈ argmaxj=1,...,m

{
uj − lj

}
. Let �̂ =

{σ1, σ2, . . . , σK} with σk < σk+1 for all k. Choose
{
σp, σq

} ∈ �̂ such that σp <(
l̂ + û

)
/2 ≤ σq , and let u1 = u − (

û − σp

)
ê and l2 = l − (

l̂ − σq

)
ê . Then R is

partitioned into R1 = [l, u1] and R2 = [l2, u]. Note that, if R = [l, u] is such that

l, u ∈ C (11)

then σp and σq always exist and the above branching rule is well-defined. Moreover,
the resulting partition elements R1 and R2 also satisfy condition (11). We shall show
that the domain reduction step on any partition element preserves condition (11). Thus,
if the initial partition element [yL, yU ] satisfies condition (11) (this can be ensured by
domain reduction), then all subsequent partition elements produced by the algorithm
will satisfy (11).
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Fig. 2. A Branch-Reduce-Cut algorithm for PCLP

3.2. Domain reduction

Suppose we have a current normal set approximation G of the set of optimal solutions,
then the region of interest is G∩H . Given a partition element R = [l, u] such that l ∈ G
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and u ∈ H , the idea of domain reduction is to find a hyper-rectangle R′ ⊂ R such that
R′ ⊇ R ∩ G ∩ H . This reduction helps to obtain improved bounds and reduces the size
of the search tree.

The domain reduction on R = [l, u], with l ∈ G and u ∈ H , can be carried out as
follows. Let

λ∗
j = max

{
λ ∈ [0, 1] : l + λ

(
uj − lj

)
ej ∈ G

}
for j = 1, . . . , m (12)

µ∗
j = max

{
µ ∈ [0, 1] : u − µ

(
uj − lj

)
ej ∈ H

}
for j = 1, . . . , m. (13)

The above problems both have optimal solutions, since the sets G and H are closed.
Construct

l′ = u −
m∑

j=1

µ∗
j

(
uj − lj

)
ej (14)

u′ = l +
m∑

j=1

λ∗
j

(
uj − lj

)
ej . (15)

Proposition 6. [l′, u′] ⊇ [l, u] ∩ G ∩ H .

Proof. Consider y ∈ [l, u] ∩ G ∩ H , such that y �∈ [l′, u′]. Then there exists an index
̂ ∈ {1, . . . , m}, such that either l̂ ≤ ŷ < l′̂ or u′

̂ < ŷ ≤ û . Consider the first case

(the second case is analogous). Let z = y +∑m
j=1,j �=̂

(
uj − yj

)
ej , i.e., zj = uj for all

j = 1, . . . , m, j �= ̂ and ẑ = ŷ . Let µ̂̂ = (
û − ẑ

)
/
(
û − l̂

)
. Clearly µ̂ ∈ [0, 1],

and we can write z = u − µ̂̂

(
û − l̂

)
ê . Note that, by construction, z ≥ y, and since

y ∈ H , we have that z ∈ H (since H is a reverse normal set). Thus µ̂̂ is a feasible
solution to the problem (13) corresponding to ̂ . Then

û − µ̂̂

(
û − l̂

) = ẑ = ŷ < l′̂ = û − µ∗
̂

(
û − l̂

)
.

The above implies that µ̂̂ > µ∗
̂ and we have a contradiction to the fact that µ∗

̂ is an
optimal solution to the problem (13) corresponding to ̂ . �

Proposition 6 establishes that the domain reduction process is valid, i.e., no feasible
solutions are lost. In case of continuous distributions, the one-dimensional optimiza-
tion problems (12) and (13) can be solved by bisection. For discrete distributions, the
problems simplify to

λ∗
j = max

{
λ ∈ [0, 1] : l + λ

(
uj − lj

)
ej ∈ G ∩ C

}
for j = 1, . . . , m

µ∗
j = max

{
µ ∈ [0, 1] : u − µ

(
uj − lj

)
ej ∈ H ∩ C

}
for j = 1, . . . , m,

and can be solved by sorting the elements in �j for all j = 1, . . . , m. It is immediately
seen that, in this case, the resulting partition element [l′, u′] will satisfy condition (11).
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3.3. Feasibility and optimality cuts

Whenever a solution ŷ is found such that f (ŷ) = +∞, i.e., the linear program (7) is
infeasible, a feasibility cut is added to the description of the set G (see lines 8 and 22 of
the main loop in Figure 2). The cut is generated as follows. Recall that dual polyhedron
for the linear program (7) is

{
(π, ρ) ∈ R

p+m : πA + ρT ≤ c, ρ ≥ 0
}
.

If f (ŷ) = +∞, then the dual to (7) is unbounded (since dual feasibility is assumed),
i.e., there exists an extreme ray (π̂, ρ̂) of the above dual polyhedron such that

π̂b + ρ̂ŷ > 0.

Such an extreme ray can be obtained via solving a Phase-I linear program. Then any
y ∈ G should satisfy the feasibility cut

ρ̂y ≤ −π̂b. (16)

Whenever a solution ŷ ∈ H such that f (ŷ) < +∞, i.e., ŷ is feasible, an optimality
cut is added to the description of G (see lines 12 and 24 of the main loop in Figure 2).
The optimality cut is generated as follows. Let (π̂, ρ̂) be an optimal dual solution for
the linear program (7) defining f (ŷ). Then any y such that f (y) ≤ f (ŷ) should satisfy
the optimality cut

ρ̂y ≤ ρ̂ŷ. (17)

To see this, first note that (π̂, ρ̂) is a feasible dual solution for the linear program (7) defin-
ing f (y), thus f (y) ≥ π̂b + ρ̂y. Since f (ŷ) = π̂b + ρ̂ŷ, the requirement f (y) ≤ f (ŷ)

then implies the optimality cut (17).
At any point in the algorithm, the set G is defined by a set of feasibility and optimality

cuts of the forms (16) and (17), respectively. Note that the cut-coefficients are always
non-negative. Thus the set G is always maintained to be a normal set.

Example 2. (contd.): Here, we illustrate the cutting plane and domain reduction steps
using Example 2. Figure 3(a) shows a feasibility cut. Consider the initial partition ele-
ment defined by [(−5, 1.5), (1, 5.5)] (shown as the dashed rectangle). While searching
for feasible solutions (see subsection 3.4), the algorithm considers the vertex (1, 5.5)

and its two adjacent vertices (−5, 5.5) and (1, 1.5). All of these points are infeasible.
The sloped dotted line in Figure 3(a) is the feasibility cut corresponding to the point
(1, 1.5). Upon adding this cut, the domain reduction step is able to reduce the partition
element [(−5, 1.5), (1, 5.5)] to [(−5, 2), (−2, 5)] (shown as the solid rectangle).

Figure 3(b) shows two optimality cuts. Consider now the partition element [(-5,2),
(-2,5)]. The vertices (−2, 2) and (−5, 5) both have finite optimal objective values, and
consequently the two optimality cuts shown as sloped dotted lines in Figure 3(b) are
generated. The optimality cut corresponding to (−5, 5) reduces the partition element
[(−5, 2), (−2, 5)] to [(−5, 2), (−3, 5)].
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y2

y1

y2

y1

(a) (b)

Fig. 3. (a) Feasibility cut corresponding to y = (1, 1.5)T and (b) Optimality cuts corresponding to y =
(−5, 5)T and y = (−2, 2)T

3.4. Upper bounding and searching for feasible solutions

Whenever a feasible solution is found, the corresponding objective value is checked
against the upper bound UB, i.e., the objective value of the best solution y∗ found thus
far, and UB and y∗ are updated appropriately. Also, as mentioned earlier, an optimality
cut is added to the description of G.

For a given partition element R, the algorithm first checks if l is feasible, i.e.,
f (l) < +∞ and l ∈ H . If it is, then this partition element is fathomed, since it cannot
contain any better feasible solution.

To search for feasible solutions within an unfathomed partition element R = [l, u],
the algorithm (see lines 20-30 of the main loop in Figure 2) checks u and the set of
m vertices of R adjacent to u (this is the candidate set S). The adjacent vertices are
checked since these might have smaller objective value than u. We might also search
for a solution on the relative boundary of H on the line segment joining l to u, however,
this might be computationally expensive.

Suppose we encounter a solution ŷ such that f (ŷ) < +∞ but ŷ �∈ H . We may then
attempt to “project” this solution to be feasible as follows. Let x̂ be an optimal solution
to the linear program (7) defining f (ŷ). Then, T x̂ ≥ ŷ. If some of these inequalities are
strict, we can consider the solution y′ = min {T x̂, b} (the min is taken component-wise).
Clearly, f

(
y′) = f (ŷ), and since y′ ≥ ŷ, it might be that y′ ∈ H , in which case, y′ is

a feasible solution.

3.5. Fathoming

A given partition element R = [l, u] can be fathomed, or discarded from further con-
sideration, if one of the following conditions are satisfied.

Infeasibility: If the partition element fails to satisfy the necessary feasibility con-
dition l ∈ G and u ∈ H , then it can be fathomed since it contains no feasible
solutions.
Feasibility: If l or a solution obtained by “projecting” l is feasible, then the partition
can be fathomed since it contains no better solutions.
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Inferiority: If LB(R) > UB, the partition does not contain any solution whose
objective function value is smaller than that of the best solution already found.
Hence the partition can be fathomed.
Tolerance: If v(R) ≤ ε and the partition has not been fathomed according to the rules
above, then the partition is not considered further. In this case, we have f (l) < +∞,
l �∈ H and u ∈ H . In this case, we choose l to be an “approximately feasible” solu-
tion and compare it with the best candidate solution found so far. Note that, if ε = 0
(as in the case of discrete distributions) this fathoming rule is never encountered.

4. Convergence analysis

4.1. Discrete distribution

We shall show that, in case of a discrete distribution of the random vector ξ , the proposed
branch-reduce-cut algorithm (with the tolerance ε = 0), either finds a global optimal
solution to PCLP or resolves that the problem is infeasible. We shall need the following
concept.

Definition 1. [10] The bounding operation in a branch-and-bound algorithm is called
finitely consistent if, (i) at every step, any unfathomed partition element can be further
refined, and if (ii) any nested sequence of successively refined partition elements is finite.

Lemma 2. The bounding operation in the Branch-reduce-cut algorithm is finitely con-
sistent.

Proof. Recall that the algorithm always generates partition elements satisfying condition
(11). Consider, any unfathomed partition element [l, u] satisfying (11). As mentioned
earlier, since {l, u} ∈ C, the branching rule is well-defined, and so [l, u] can be further
refined. Also, the branching rule guarantees that any nested sequence of unfathomed
partition elements will reduce to a point after a finite number of steps, whence such a
partition element will have to be fathomed. Thus any nested sequence of successively
refined partition elements is finite. �
Theorem 1. Given a PCLP with discrete distributions for the random parameters, the
Branch-reduce-cut algorithm with ε = 0 terminates after finitely many steps either with
a global optimal solution or by resolving that the problem is infeasible.

Proof. From Theorem IV.1 in [10], a branch-and-bound algorithm where the bounding
operation is finitely consistent terminates in a finite number of steps. Thus by Lemma 2,
the proposed Branch-reduce-cut algorithm terminates after finitely many steps.

Consider, first, the case that the algorithm found a feasible solution y∗. In this case,
the feasible region is non-empty, therefore PCLP has an optimal solution. Suppose
y′ ∈ C is an optimal solution to PCLP. We shall show that f (y∗) = f

(
y′), so that y∗

is an optimal solution of PCLP. Suppose, for contradiction, that f
(
y′) < f (y∗). Let

Ri = [li , ui] for i = 1, . . . , I be the set of partition elements corresponding to the
leaf nodes of the branch-and-bound search tree upon termination. By the exhaustive-
ness of the branching rule and the validity of the domain reduction rules, there exists
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i′ such that y′ ∈ Ri′ = [li
′
, ui′ ]. Then li

′ ∈ G and ui′ ∈ H , therefore Ri′ cannot be

fathomed due to infeasibility. Moreover, by f
(
li

′) ≤ f
(
y′) ≤ f

(
ui′

)
, we must have

li
′ �∈ H , since otherwise li

′
would be an optimal solution, and the algorithm would have

discovered it and set y∗ = li
′
. So Ri′ cannot be fathomed by feasibility. Finally, since

f
(
li

′) ≤ f
(
y′) < f (y∗) = UB, therefore Ri′ cannot be fathomed by inferiority.

Thus, Ri′ can be further refined, and the algorithm should not have terminated. Hence
f

(
y′) = f (y∗).
Consider now the second case, that the algorithm did not find any feasible solution.

We then claim that PCLP is infeasible. Suppose, for contradiction, that y′ is a feasible
solution to PCLP. As before, let Ri = [li , ui] for i = 1, . . . , I be the set of partition
elements corresponding to the leaf nodes of the branch-and-bound search tree upon ter-
mination, and let i′ be such that y′ ∈ Ri′ = [li

′
, ui′ ]. Then li

′ ∈ G and ui′ ∈ H , therefore
Ri′ cannot be fathomed due to infeasibility. Moreover, li

′ �∈ H , since otherwise li
′
would

be a feasible solution, and the algorithm would have discovered it. So Ri′ cannot be fath-
omed by feasibility. Finally, since no feasible solution has been found, UB = +∞, and

f
(
li

′)
< UB, therefore Ri′ cannot be fathomed by inferiority. Thus, Ri′ can be further

refined, and the algorithm should not have terminated. Hence, PCLP cannot have any
feasible solution. �

4.2. Continuous distribution

In the continuous distribution case, if ε = 0, then the algorithm may not terminate
finitely and can only be guaranteed to converge in the limit. To see this, suppose that the
feasible set is a singleton, then an infinite number of branching operations may be needed
to attain a partition element [l, u] where the single feasible point coincides with a.

Theorem 2. Given a PCLP with continuous distributions for the random parameters, if
the Branch-reduce-cut algorithm with ε = 0 terminates, then it terminates with a global
optimal solution or by resolving that the problem is infeasible.

Proof. Analogous to the proof of Theorem 1. �

Consider now the case when the algorithm does not terminate. Let k denote the index
for the iterations, UBk denote the upper bound at iteration k, and [lk, uk] be the partition
element considered in iteration k.

Theorem 3. Given a PCLP with continuous distributions for the random parameters,
if the Branch-reduce-cut algorithm with ε = 0 does not terminate, then PCLP has an
optimal solution y∗, and

lim
q→∞ lkq = y∗.

Proof. Note that lk ∈ G and uk ∈ H for all k. Also by the exhaustiveness of the branch-
ing rule, we have limk→∞

(
uk − lk

) = 0. Since the sets G and H are closed, for any
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convergent subsequence limq→∞ ukq = limq→∞ lkq = l∗ ∈ G ∩ H ∩ [yL, yU ]. Thus
PCLP has a feasible solution l∗, and hence an optimal solution y∗.

The least lower bound selection rule guarantees that f
(
lkq

) ≤ f (y∗) for all q. Thus
limq→∞ f

(
lkq

) = f (l∗) ≤ f (y∗), where the first equality follows from the continuity
of f over G. Therefore, l∗ is also an optimal solution. �

To ensure finite termination, a positive tolerance (ε > 0) is required. The toler-
ance-based fathoming rule then guarantees that the algorithm terminates. In this case,
we might end up with a δ-feasible solution y∗, i.e., α − F (y∗) ≤ δ for some δ > 0.
For a PCLP with an absolutely continuous cumulative density F : R

m �→ [0, 1] for
the random vector ξ(ω) with fi : R

m �→ R+ for i = 1, . . . , m as the correspond-
ing marginal probability density functions, ε and δ are related as δ ≤ εL, where L =
maxi=1,...,m maxy∈[yL,yU ]{fi(y)}.

5. Computational results

In this section we report on some computational experience in using the proposed
Branch-cut-reduce algorithm for randomly generated instances of PCLP with discrete
distributions, i.e., ξ(ω) has K possible realizations {ξ1, . . . , ξK} with probabilities{
p1, . . . , pK

}
. Such a problem can be immediately reformulated into the following

MILP (see, e.g., [17])

min
x,y,λ

cT x

s.t. Ax = b

T x ≥ y

K∑
k=1

pkλk ≥ α

ξk
j λk ≤ yj for j = 1, . . . , m, k = 1, . . . , K

λk ∈ {0, 1} for k = 1, . . . , K

x ≥ 0, y ≥ 0.

The above MILP formulation can be improved by adding the constraints

λk1 ≥ λk2 if ξk1 ≤ ξk2 for k1 = 1, . . . , K and k2 = k1 + 1, . . . , K.

We compare the performance of the proposed algorithm with that of solving the above
MILP formulation using CPLEX 8.0.

The proposed algorithm was implemented in C++ with CPLEX 8.0 as the linear
programming solver. All computations were on a UltraSparc-III-Cu UNIX workstation
2x900MHz CPUs and 2GB RAM.

For generating our test problems, we replaced the constraint Ax = b by simple
bounds. The number n of x-variables was fixed at n = 50, and the number m of y-vari-
ables was varied in the set {3, 6, 9}. The number of scenarios K was varied in the set
{100, 300, 500}. The desired probability level α was set to 0.9. For each combination of
m and K , five test problems were randomly generated as follows:
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1. K realizations of the ξ vector were randomly sampled from a uniform distribution
over [0, 100]m. Each realization was assigned a probability of 1/K .

2. Each component of c and T were independently randomly sampled from a uniform
distribution over [0, 20].

Table 2 compares, for each test problem, the CPU seconds required to solve the
MILP reformulation using CPLEX 8.0 (under columns labelled “MIP”), the CPU sec-
onds required by a branch-and-reduce algorithm, i.e., the proposed scheme without the
enhancements offered by cutting planes (under the columns labelled “BR”), and the
CPU seconds required by the proposed branch-reduce-cut algorithm (under the columns
labelled “BRC”). In the majority of the test problems, the proposed branch-cut-reduce
algorithm performed better that the other two approaches. In particular, in only two out
of 45 test problems, the MILP approach showed better performance.

In Figure 4, we compare the growth of the CPU time required by the MILP ap-
proach and that required by the proposed algorithm, with and without the cutting plane
enhancements, as the number K of realizations in the distribution of the uncertain param-
eters grows for PCLPs with m = 5 and n = 50. Each data point in the graph corre-
sponds to an average over 5 randomly generated instances. It is evident that the proposed
algorithm offers significant advantages over the MILP approach as the number of real-
izations increase.

Table 2. Comparison of CPU seconds

K = 100 K = 300 K = 500
Test No. MIP BR BRC MIP BR BRC MIP BR BRC
1 0.04 0.00 0.00 2.78 0.00 0.00 240.84 0.19 0.04
2 0.04 9.00 1.59 7.67 0.28 0.08 16.26 0.00 0.00
3 0.03 0.00 0.00 42.77 0.25 0.00 175.48 0.59 0.12
4 0.09 0.06 0.00 2.81 0.00 0.00 16.36 0.00 0.00
5 0.04 0.00 0.00 5.35 0.00 0.00 18.71 0.17 0.05
AVG 0.05 2.27 0.40 14.65 0.13 0.02 56.70 0.19 0.04

m = 3

K = 100 K = 300 K = 500
Test No. MIP BR BRC MIP BR BRC MIP BR BRC
1 0.03 0.00 0.00 10.46 0.32 0.00 7.91 0.00 0.00
2 0.14 0.15 0.00 23.62 0.77 0.13 8.20 0.00 0.00
3 0.05 0.17 0.00 51.43 3.16 0.39 59.11 6.50 4.01
4 0.05 0.37 0.00 2.12 0.62 0.22 4.94 0.00 0.00
5 0.24 0.09 0.00 1.70 0.00 0.00 202.57 3.47 1.51
AVG 0.10 0.16 0.00 17.87 0.97 0.15 56.55 1.99 1.10

m = 6

K = 100 K = 300 K = 500
Test No. MIP BR BRC MIP BR BRC MIP BR BRC
1 2.21 1.04 0.00 1.91 0.00 0.00 445.89 9.61 5.09
2 0.65 0.46 0.00 82.90 3.18 0.63 307.91 3.94 0.16
3 5.34 29.13 8.61 3.94 0.32 0.00 2261.06 37.55 13.64
4 5.39 0.72 0.08 5.00 0.53 0.00 89.97 1.45 0.38
5 3.25 3.05 0.62 2.73 1.38 0.64 5216.37 21.54 16.75
AVG 3.37 6.88 1.86 19.30 1.08 0.25 1664.24 14.82 7.20

m = 9
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Fig. 4. CPU seconds versus K (m = 5, n = 50)
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